Solides Et Volumes

Sixieme - Matheo

Les Solides et les Volumes

Introduction

Les solides sont des figures géométriques en trois dimensions qui occupent un espace. Comprendre les différents types de solides et savoir calculer leur volume est essentiel pour résoudre de nombreux problèmes pratiques : calculer la capacité d'un réservoir, déterminer la quantité de matériau nécessaire pour construire un objet, ou encore estimer l'espace occupé par un meuble.

I. Les différents types de solides

1. Les polyèdres

Définition:

Un polyèdre est un solide dont toutes les faces sont des polygones (figures planes à plusieurs côtés).

Les prismes

Caractéristiques:

- Deux bases parallèles et identiques
- Faces latérales rectangulaires
- Arêtes parallèles entre les bases

Exemples de prismes:

- Pavé droit (parallélépipède rectangle) : Prisme à base rectangulaire
- Cube : Prisme à base carrée avec toutes les arêtes égales
- Prisme triangulaire : Prisme à base triangulaire
- Prisme hexagonal : Prisme à base hexagonale

Les pyramides

Caractéristiques:

- Une base polygonale
- Un sommet (apex) qui n'appartient pas à la base
- Faces latérales triangulaires

Exemples de pyramides:

• Pyramide à base carrée : Base carrée, 4 faces triangulaires

- Pyramide à base triangulaire (tétraèdre) : Base triangulaire, 3 faces triangulaires
- Pyramide à base hexagonale : Base hexagonale, 6 faces triangulaires

2. Les solides de révolution

Définition:

Un solide de révolution est obtenu en faisant tourner une figure plane autour d'un axe.

Le cylindre

Caractéristiques:

- Deux bases circulaires parallèles et identiques
- Surface latérale courbe (rectangle enroulé)
- Hauteur perpendiculaire aux bases

Le cône

Caractéristiques:

- Une base circulaire
- Un sommet (apex) qui n'appartient pas à la base
- Surface latérale courbe

La sphère

Caractéristiques:

- Surface entièrement courbe
- Tous les points de la surface sont à égale distance du centre
- Pas de faces, d'arêtes ni de sommets

Différents types de solides

II. Le volume des solides

1. Définition du volume

Définition:

Le volume d'un solide est la mesure de l'espace qu'il occupe dans l'espace à trois dimensions.

Unités de volume :

• Unité de base : Le mètre cube (m³)

• Multiples: km³, hm³, dam³

• Sous-multiples: dm³, cm³, mm³

2. Volume du cube

Formule:

 $(V_{cube}) = c \times c \times c \times c \times c \times c$

où \(c\) est la longueur d'une arête du cube

Exemple:

Un cube d'arête \(4\) cm a un volume de :

 $(V = 4 \times 4 \times 4 = 64) \text{ cm}^3$

Cube d'arête 4 cm

3. Volume du pavé droit (parallélépipède rectangle)

Formule:

\(V_{pavé} = L \times I \times h\)

où \(L\) est la longueur, \(l\) la largeur et \(h\) la hauteur

Exemple:

Un pavé droit de dimensions \(8\) cm \times \(5\) cm \times \(3\) cm a un volume de :

 $V = 8 \times 5 \times 3 = 120$ cm³

Pavé droit 8×5×3 cm

4. Volume du cylindre

Formule:

 $(V_{cylindre}) = \pi^2 \times h$

où \(r\) est le rayon de la base et \(h\) la hauteur

Exemple:

Un cylindre de rayon \(3\) cm et de hauteur \(7\) cm a un volume de :

\(V = \pi \times 3^2 \times 7 = \pi \times 9 \times 7 = 63\pi\) cm³ $\approx (198)$ cm³

5. Volume de la sphère

Formule:

 $(V {sphère} = \frac{4}{3} \times r^3)$

où \(r\) est le rayon de la sphère

Exemple:

Une sphère de rayon \(5\) cm a un volume de :

 $(V = \frac{4}{3} \times 5^3 = \frac{4}{3} \times 125$ = $\frac{500}{3}\pi \times (524) \text{ cm}^3$

III. Les unités de volume et de contenance

1. Les unités de volume

Définition:

Les unités de volume mesurent l'espace occupé par un solide. L'unité de référence est le mètre cube (m³).

Tableau de conversion des unités de volume

Multiples et sous-multiples du mètre cube :

10 mètres cubes donnent 1 décamètre cube, 10 décamètres cubes donnent 1 hectomètre cube...

km³	hm³	dam³	m³	dm³	cm³	mm³
kilomètre cube	hectomètre cube	_		décimètre cube	centimètre cube	millimètre cube

Correspondances importantes:

- $1 \text{ km}^3 = 1 000 000 000 \text{ m}^3$
- $1 \text{ hm}^3 = 1 000 000 \text{ m}^3$
- $1 \text{ dam}^3 = 1 000 \text{ m}^3$
- $1 \text{ dm}^3 = 0.001 \text{ m}^3$
- 1 cm 3 = 0,000001 m 3
- 1 mm 3 = 0,00000001 m 3

2. Les unités de contenance

Définition:

Les unités de contenance mesurent la capacité d'un récipient. L'unité de référence est le litre (L).

Tableau de conversion des unités de contenance

kL	hL	daL	L	dL	cL	mL
kilolitre	hectolitre	décalitre	litre	décilitre	centilitre	millilitre
1000 L	100 L	10 L	1 L	0,1 L	0,01 L	0,001 L

3. Lien entre volume et contenance

Propriété fondamentale:

1 litre = 1 décimètre cube

 $1 L = 1 dm^3$

Exemples de conversion:

- (2,5) L = (2,5) dm³ = (0,0025) m³
- (750) mL = (0,75) L = (0,75) dm³
- \(3\) $m^3 = (3000) dm^3 = (3000) L$

Conversion volume-contenance

Tableau de conversion volumecontenance

Propriété fondamentale : 1 L = 1 dm³

km³	hm³	dam³	m³	dm³	cm³
-	-	-	-	1 L	1 mL
-	-	-	-	kL	hL
-	-	-	_	L	dL

Exemple de conversion:

 $177 \text{ mL} = 0.177 \text{ dm}^3 = 0.177 \text{ L}$

IV. Applications pratiques

1. Calculs de volume dans la vie quotidienne

Exemples concrets:

- Réservoir d'eau : Calculer la capacité d'un réservoir cylindrique
- **Emballage :** Déterminer le volume d'une boîte pour optimiser le transport
- **Construction :** Calculer la quantité de béton nécessaire pour une fondation
- Cuisine : Adapter les quantités d'ingrédients selon la taille du récipient

2. Problèmes résolus

Problème 1:

Un aquarium a la forme d'un pavé droit de dimensions (60) cm $\times (30)$ cm $\times (40)$ cm. Quel est son volume en litres ?

Solution:

 $(V = 60 \text{ times } 30 \text{ times } 40 = 72\,000\) \text{ cm}^3$

 $(72,000) \text{ cm}^3 = (72) \text{ dm}^3 = (72) \text{ L}$

Problème 2:

Une bouteille cylindrique a un rayon de \(4\) cm et une hauteur de \(20\) cm. Quelle est sa capacité en millilitres ?

Solution:

 $(V = \pi 4^2 \times 20 = \pi 16 \times 20 = 320\pi) cm^3$

 $(320\pi) cm^3 \approx (1005) cm^3 = (1005) mL$

V. Méthodes de vérification

Vérification par estimation

Méthode:

Estimer le résultat pour vérifier la cohérence.

Exemple: Un cube d'arête \(5\) cm

• Calcul exact : \(5^3 = 125\) cm³ ✓

Vérification par unités

Méthode:

Vérifier que les unités du résultat sont cohérentes.

Exemple : Volume d'un pavé en cm \times cm \times cm = cm³ \checkmark

Résumé

Points essentiels à retenir :

- Les polyèdres ont des faces polygonales (prismes, pyramides)
- Les solides de révolution sont obtenus par rotation (cylindre, cône, sphère)
- Le volume mesure l'espace occupé par un solide
- Les formules principales :
 - Cube : $(V = c^3)$
 - Pavé droit : \(V = L \times I \times h\)
 - Cylindre : \(V = \pi \times r^2 \times h\)
 - Sphère : $(V = \frac{4}{3} \times r^3)$
- 1 L = 1 dm³ (lien volume-contenance)
- Les unités doivent être cohérentes dans les calculs

Exercices d'application

Exercices pratiques:

- 1. Calculer le volume d'un cube d'arête \(6\) cm
- 2. Déterminer le volume d'un pavé droit de dimensions (12) cm $\times (5)$ cm
- 3. Calculer la capacité en litres d'un cylindre de rayon \(3\) cm et de hauteur \(15\) cm
- 4. Convertir \(2,5\) L en cm³
- 5. Un réservoir sphérique a un rayon de \(2\) m. Quel est son volume en m³?
- 6. Une boîte de \(2\) L contient des cubes de \(1\) cm d'arête. Combien de cubes peut-on y mettre ?

Généré par Matheo - Assistant IA pour les mathématiques

Date de génération : 31/10/2025 à 15:02