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CONTINUITÉ DES FONCTIONS

I. NOTION DE CONTINUITÉ

1) Définition intuitive

DÉFINITION :

Une fonction \(f\) est continue en un point \(a\) si on peut tracer sa courbe

représentative en ce point "sans lever le crayon".

REMARQUE :

La continuité d'une fonction en un point signifie qu'il n'y a pas de "saut" ou

de "trou" dans la courbe en ce point.

2) Définition mathématique

DÉFINITION :

Soit \(f\) une fonction définie sur un intervalle \(I\) contenant un réel \(a\).

• \(f\) est continue en \(a\) si \(\lim_{x \to a} f(x) = f(a)\)

Fonction continue

Fonction discontinue



• \(f\) est continue sur \(I\) si \(f\) est continue en tout point de \(I\)

EXEMPLES :

• Les fonctions \(x \mapsto |x|\), \(x \mapsto x^n\) (\(n \in \mathbb{N}\)) et

plus  généralement  les  fonctions  polynômes  sont  continues  sur  \

(\mathbb{R}\)

• Les fonctions \(f(x) = \sin x\)  et \(g(x) = \cos x\)  sont continues sur \

(\mathbb{R}\)

• La fonction \(h(x) = \sqrt{x}\) est continue sur \([0; +\infty[\)

• La fonction \(k(x) = \frac{1}{x}\) est continue sur \(]-\infty; 0[\) et sur \

(]0; +\infty[\)

II. THÉORÈME FONDAMENTAL

THÉORÈME :

Une fonction dérivable sur un intervalle \(I\) est continue sur cet intervalle.

REMARQUE :

La  réciproque  est  fausse  !  Une  fonction  peut  être  continue  sans  être

dérivable (exemple : \(f(x) = |x|\) en 0).



III. ÉTUDE DE LA CONTINUITÉ D'UNE FONCTION

Méthode d'étude

MÉTHODE :

Pour étudier la continuité d'une fonction \(f\) :

Identifier les points "suspects" (changement de définition, valeurs

interdites)

Calculer les limites à gauche et à droite en ces points

Comparer avec la valeur de la fonction en ces points

Conclure sur la continuité

Exemple d'application

EXEMPLE :

On considère la fonction \(f\) définie sur \(\mathbb{R}\) par :

\[f(x) = \begin{cases}

-x + 2 & \text{si } x < 3 \\

x - 4 & \text{si } 3 \leq x < 5 \\

-2x + 13 & \text{si } x \geq 5

\end{cases}\]

ÉTUDE DE LA CONTINUITÉ :

• En \(x = 3\) :

\(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (-x + 2) = -1\)

\(\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x - 4) = -1\)

\(f(3) = 3 - 4 = -1\)

1. 

2. 

3. 

4. 

Fonction par morceaux

• 

• 

• 



Donc \(f\) est continue en 3.

• En \(x = 5\) :

\(\lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} (x - 4) = 1\)

\(\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} (-2x + 13) = 3\)

Les  limites  à  gauche  et  à  droite  sont  différentes,  donc  \(f\)  n'est  pas

continue en 5.

IV. THÉORÈME DES VALEURS INTERMÉDIAIRES

1) Énoncé du théorème

THÉORÈME DES VALEURS INTERMÉDIAIRES :

Soit \(f\) une fonction définie et continue sur un intervalle \([a; b]\).

Pour tout réel \(k\) compris entre \(f(a)\) et \(f(b)\), il existe au moins un réel

\(c\) entre \(a\) et \(b\) tel que \(f(c) = k\).

2) Conséquences

CONSÉQUENCE :

Sous ces conditions, l'équation \(f(x) = k\) admet au moins une solution

dans l'intervalle \([a; b]\).

APPLICATION :

Ce théorème est très utile pour :

• 

• 

Théorème des valeurs intermédiaires



• Résoudre des équations

• Montrer l'existence de solutions

• Encadrer des solutions

3) Cas particulier : fonction strictement monotone

THÉORÈME :

Si \(f\) est continue et strictement monotone sur \([a; b]\), alors pour tout \

(k\) compris entre \(f(a)\) et \(f(b)\), l'équation \(f(x) = k\) admet une unique

solution dans \([a; b]\).

V. EXEMPLES D'APPLICATION

Exemple 1 : Résolution d'équation

EXEMPLE :

Montrer que l'équation \(x^3 - 3x + 1 = 0\) admet au moins une solution

dans \([0; 2]\).

SOLUTION :

Soit \(f(x) = x^3 - 3x + 1\).

• \(f\) est continue sur \(\mathbb{R}\) (fonction polynôme)

• \(f(0) = 1\) et \(f(2) = 8 - 6 + 1 = 3\)

• \(0\) est compris entre \(f(0) = 1\) et \(f(2) = 3\)



D'après  le  théorème  des  valeurs  intermédiaires,  l'équation  \(f(x)  =  0\)

admet au moins une solution dans \([0; 2]\).

Exemple 2 : Encadrement de solution

EXEMPLE :

Encadrer la solution de l'équation \(e^x = x + 2\) à \(10^{-2}\) près.

SOLUTION :

Soit \(f(x) = e^x - x - 2\).

• \(f\) est continue sur \(\mathbb{R}\)

• \(f(0) = 1 - 0 - 2 = -1 < 0\)

• \(f(1) = e - 1 - 2 \approx 2,72 - 3 = -0,28 < 0\)

• \(f(2) = e^2 - 2 - 2 \approx 7,39 - 4 = 3,39 > 0\)

La solution est dans \([1; 2]\).

En affinant  :  \(f(1,5)  \approx 0,48 > 0\),  donc la  solution est  dans \([1;

1,5]\).

\(f(1,2) \approx -0,07 < 0\), donc la solution est dans \([1,2; 1,5]\).

\(f(1,3) \approx 0,17 > 0\), donc la solution est dans \([1,2; 1,3]\).

La solution est encadrée par \(1,2 < \alpha < 1,3\).



VI. RÉSUMÉ

POINTS CLÉS :

• Une fonction est continue en un point si sa limite en ce point est égale à

sa valeur

• Toute fonction dérivable est continue

•  Le  théorème  des  valeurs  intermédiaires  permet  de  résoudre  des

équations

• La continuité est essentielle pour l'étude des fonctions

MÉTHODES :

• Pour étudier la continuité : calculer les limites à gauche et à droite

• Pour résoudre \(f(x) = k\) : utiliser le TVI sur un intervalle approprié

• Pour encadrer une solution : affiner l'intervalle par dichotomie
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