Fonctions Continues

Terminale - Matheo

CONTINUITE DES FONCTIONS

I. NOTION DE CONTINUITE

1) Définition intuitive

Ve

DEFINITION :

Une fonction \(f\) est continue en un point \(a\) si on peut tracer sa courbe
représentative en ce point "sans lever le crayon".

REMARQUE :

La continuité d'une fonction en un point signifie qu'il n'y a pas de "saut" ou
de "trou" dans la courbe en ce point.

-

Fonction continue

Fonction discontinue

2) Définition mathématique
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DEFINITION :

Soit \(f\) une fonction définie sur un intervalle \(I\) contenant un réel \(a\).

* \(f\) est continue en \(a\) si \(\lim_{x \to a} f(x) = f(a)\)




* \(f\) est continue sur \(I\) si \(f\) est continue en tout point de \(I\)

EXEMPLES :

* Les fonctions \(x \mapsto |x]\), \(x \mapsto x~n\) (\(n \in \mathbb{N}\)) et
plus généralement les fonctions polynbmes sont continues sur \
(\mathbb{R}\)

* Les fonctions \(f(x) = \sin x\) et \(g(x) = \cos x\) sont continues sur \
(\mathbb{R}\)

 La fonction \(h(x) = \sqrt{x}\) est continue sur \([0; +\infty[\)

* La fonction \(k(x) = \frac{1}{x}\) est continue sur \(]-\infty; O[\) et sur \
(10; +\infty[\)
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II. THEOREME FONDAMENTAL
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THEOREME :

Une fonction dérivable sur un intervalle \(I\) est continue sur cet intervalle.

REMARQUE :

La réciproque est fausse ! Une fonction peut étre continue sans étre
dérivable (exemple : \(f(x) = |x|\) en 0).




I1l. ETUDE DE LA CONTINUITE D'UNE FONCTION

Méthode d'étude
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METHODE :
Pour étudier la continuité d'une fonction \(f\) :

1. Identifier les points "suspects" (changement de définition, valeurs
interdites)

2. Calculer les limites a gauche et a droite en ces points
3. Comparer avec la valeur de la fonction en ces points

4. Conclure sur la continuité

A

Exemple d'application

-

EXEMPLE :

On considere la fonction \(f\) définie sur \(\mathbb{R}\) par :

\[f(x) = \begin{cases}

-X + 2 & \text{si } x < 3\\

X -4 & \text{si } 3\leqgx <5\\
-2x + 13 & \text{si } x\geq 5
\end{cases}\]

-

Fonction par morceaux

-

ETUDE DE LA CONTINUITE :
e En\(x = 3\):

o \(\lim_{x \to 37-} f(x) = \lim_{x \to 37-} (-x + 2) = -1\)
e \(\lim_{x \to 3~ +3} f(x) = \lim_{x \to 3~ +} (x - 4) = -1\)
*\(f(3) =3-4=-1\)




Donc \(f\) est continue en 3.

* En\(x = 5\):

o \(\lim_{x \to 57-} f(x) =\lim_{x\to57~-} (x-4) = 1\)
e \(\lim_{x\to 5~+} f(x) = \lim_{x\to 5~+} (-2x + 13) = 3\)

Les limites a gauche et a droite sont différentes, donc \(f\) n'est pas
continue en 5.

-

IV. THEOREME DES VALEURS INTERMEDIAIRES

1) Enoncé du théoréme
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THEOREME DES VALEURS INTERMEDIAIRES :

Soit \(f\) une fonction définie et continue sur un intervalle \([a; b]\).

Pour tout réel \(k\) compris entre \(f(a)\) et \(f(b)\), il existe au moins un réel
\(c\) entre \(a\) et \(b\) tel que \(f(c) = k\).

A

Théoréme des valeurs intermédiaires

2) Conséquences
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CONSEQUENCE :

Sous ces conditions, I'équation \(f(x) = k\) admet au moins une solution
dans l'intervalle \([a; b]\).

APPLICATION :

Ce théoreme est tres utile pour :




» Résoudre des équations

* Montrer I'existence de solutions

* Encadrer des solutions

. _J

3) Cas particulier : fonction strictement monotone
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THEOREME :

Si \(f\) est continue et strictement monotone sur \([a; b]\), alors pour tout \
(k\) compris entre \(f(a)\) et \(f(b)\), I'équation \(f(x) = k\) admet une unique
solution dans \([a; b]\).

V. EXEMPLES D'APPLICATION

Exemple 1 : Résolution d'équation

( N\

EXEMPLE :

Montrer que I'équation \(x~3 - 3x + 1 = 0\) admet au moins une solution
dans \([0; 2]\).

SOLUTION :

Soit \(f(x) = x~3 - 3x + 1\).

* \(f\) est continue sur \(\mathbb{R}\) (fonction polyndme)

* \(f(0) = 1\) et \(f(2) =8-6 +1 = 3\)

* \(0\) est compris entre \(f(0) = 1\) et \(f(2) = 3\)




D'aprés le théoreme des valeurs intermédiaires, I'équation \(f(x) = 0\)
admet au moins une solution dans \([0; 2]\).

Exemple 2 : Encadrement de solution
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EXEMPLE :

Encadrer la solution de I'équation \(e”™x = x + 2\) a \(10™{-2}\) pres.

SOLUTION :

Soit \(f(x) = e™x - x - 2\).

e \(f\) est continue sur \(\mathbb{R}\)

*\(f(0)=1-0-2=-1<0)

e \(f(1) =e-1-2\approx 2,72 -3 =-0,28 < 0\)

* \(f(2) = e™2-2-2\approx 7,39 - 4 = 3,39 > 0\)

La solution est dans \([1; 2]\).

En affinant : \(f(1,5) \approx 0,48 > 0\), donc la solution est dans \([1;

1,5]\).

\(f(1,2) \approx -0,07 < 0\), donc la solution est dans \([1,2; 1,5]\).

\(f(1,3) \approx 0,17 > 0\), donc la solution est dans \([1,2; 1,3]\).

La solution est encadrée par \(1,2 < \alpha < 1,3\).




V1. RESUME

'd 2\

POINTS CLES :

* Une fonction est continue en un point si sa limite en ce point est égale a
sa valeur

e Toute fonction dérivable est continue

* Le théoreme des valeurs intermédiaires permet de résoudre des
équations

* La continuité est essentielle pour I'étude des fonctions

METHODES :

 Pour étudier la continuité : calculer les limites a gauche et a droite
* Pour résoudre \(f(x) = k\) : utiliser le TVI sur un intervalle approprié

* Pour encadrer une solution : affiner l'intervalle par dichotomie
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