Fonctions Trigonométriques

Terminale - Matheo

FONCTIONS TRIGONOMÉTRIQUES

I. DÉFINITION DES FONCTIONS SINUS ET COSINUS

1) Le cercle trigonométrique

Le plan est muni d'un repère orthonormé $((0; \sqrt{i}, \sqrt{j}))$.

À tout réel \(t\), on associe un unique point \(M\) du cercle trigonométrique (cercle de centre \(O\) et de rayon 1) tel que \(t\) soit la mesure de l'angle orienté \((\vec{i}, \overrightarrow{OM})\) en radians.

Le point \(M\) a pour coordonnées \((\cos t; \sin t)\).

Cercle trigonométrique

REMARQUE:

Pour tout réel $(t \in \mathbb{R})$, les valeurs de $(\cos t)$ et $(\sin t)$ sont toujours comprises entre -1 et 1. Autrement dit :

```
\( -1 \le \cos t \le 1 \)
```

\(-1 \le \sin t \le 1 \)

2) Définition des fonctions sinus et cosinus

DÉFINITION:

- La fonction qui à tout réel \(x\) fait correspondre l'abscisse \(\cos x\) du point \(M\) est appelée la **fonction cosinus** et est notée \(\cos\).
- La fonction qui à tout réel \(x\) fait correspondre l'ordonnée \(\\sin x\) du point \(M\) est appelée la **fonction sinus** et est notée \(\\\sin\).

II. PROPRIÉTÉS DES FONCTIONS SINUS ET COSINUS

1) Parité des fonctions sinus et cosinus

PROPRIÉTÉ (admise) :

- Pour tout réel \(x\), \(\\cos(-x) = \\cos x\): on dit que la fonction cosinus est paire sur \(\\mathbb{R}\\).
- Pour tout réel \(x\), \(\sin(-x) = -\sin x\): on dit que la fonction sinus est impaire sur \(\mathbb{R}\).

2) Interprétation graphique de la parité

Le plan est muni d'un repère orthonormal $((0; \sqrt{i}, \sqrt{j}))$.

* Pour la fonction cosinus (paire) :

Les points $(M(x; \cos x))$ et $(M'(-x; \cos(-x)))$ sont symétriques par rapport à l'axe des ordonnées $((O; \sqrt{j}))$. La courbe représentative de la fonction cosinus est donc **symétrique par rapport à l'axe des ordonnées**.

Courbe cosinus parité

* Pour la fonction sinus (impaire) :

Les points $(M(x; \sin x))$ et $(M'(-x; \sin(-x)))$ sont symétriques par rapport à

l'origine \(O\) du repère. La courbe représentative de la fonction sinus est donc symétrique par rapport à l'origine \(O\) du repère.

Courbe sinus parité

3) Périodicité des fonctions sinus et cosinus

PROPRIÉTÉ (admise) :

Pour tout réel \(x\), on a :

$$(\cos(x + 2\pi) = \cos x)$$

$$(\sin(x + 2\pi) = \sin x)$$

On dit que les fonctions cosinus et sinus sont **périodiques de période** \(2\pi\) (ou « \(2\pi\)-périodiques »). Cela signifie que leurs courbes représentatives se répètent tous les \(2\pi\) sur l'axe des abscisses.

Périodicité des fonctions trigonométriques

III. DÉRIVÉES DES FONCTIONS TRIGONOMÉTRIQUES

1) Dérivées des fonctions sinus et cosinus

PROPRIÉTÉ (admise) :

Les fonctions sinus et cosinus sont définies et dérivables sur $\mbox{\mbox{\mbox{$\sim$}}}$ \) et :

- Pour tout $(x \in \mathbb{R})$, $(\sin' x = \cos x)$
- Pour tout $(x \in \mathbb{R})$, $(\cos' x = -\sin x)$

2) Dérivées de fonctions composées

PROPRIÉTÉ:

Soit (u) une fonction définie et dérivable sur un intervalle (I). Alors les fonctions $(\cos u)$ et $(\sin u)$ sont dérivables sur (I) et :

- \((\cos u)' = -u' \sin u\)
- \((\sin u)' = u' \cos u\)

EXEMPLE:

Soient (f) et (g) les fonctions définies sur (\mathbb{R}) par :

- $\langle f(x) = \sin(x^2+1) \rangle$
- $(g(x) = \frac{1+e^x}{e^x})$

Déterminer pour tout réel (x), (f'(x)) et (g'(x)).

SOLUTION:

• Pour $\langle f(x) = \sin(x^2+1) \rangle$:

On pose $(u(x) = x^2 + 1)$, donc (u'(x) = 2x)

 $\label{eq:final_cos} $$ (f'(x) = u'(x) \cos u(x) = 2x \cos(x^2+1) . $$$

• Pour $(g(x) = \frac{1+e^x}{e^x}) :$

On pose $(u(x) = 1+e^x)$, donc $(u'(x) = e^x)$

$$\label{eq:cos} $$ (g'(x) = \frac{-u'(x) \sin u(x) \cdot e^x - \cos u(x) \cdot e^x}{(e^x)^2}) $$ (g'(x) = \frac{-e^x \sin(1+e^x) - \cos(1+e^x)}{e^x}) $$ (g'(x) = -\sin(1+e^x) - \frac{-e^x}{e^x}) $$ (g'(x) = -\cos(1+e^x) - \frac{-e^x}{e^x}) $$ (g'(x)$$

IV. ÉTUDE DES FONCTIONS SINUS ET COSINUS

1) Sens de variation de la fonction cosinus

Pour étudier le sens de variation de la fonction cosinus, nous étudions le signe de sa dérivée $(-\sin(x))$.

Cercle trigonométrique signe sinus

\(x\)	\(0\)	\(\pi\)	
$(\cos'(x) = -\sin(x))$	\(0\)	\(-\)	\(0\)
\(\cos(x)\)	\(1\)	\(\searrow\)	\(-1\)

On en déduit le sens de variations de la fonction cosinus sur \([-\pi; \pi]\) par symétrie axiale par rapport à l'axe des ordonnées (car la fonction est paire) :

\(x\)	\(-\pi\)	\(0\)	\(\pi\)		
\(\cos(x)\)	\(-1\)	\(\nearrow\)	\(1\)	\(\searrow\)	\(-1\)

2) Sens de variation de la fonction sinus

Pour étudier le sens de variation de la fonction sinus, nous étudions le signe de sa dérivée $(\cos(x))$.

Cercle trigonométrique signe cosinus

\(x\)	\(- \pi\)	\(-\frac{\pi} {2}\)	\(0\)	\(\frac{\pi} {2}\)	\ (\pi\)
-------	--------------	------------------------	-------	-----------------------	-------------

\(\sin'(x) = \cos(x) \)	\(-\)	\(0\)	\(+	\(0\)	\(-\)		
\(\sin(x)\)	\(0\)	\(\searrow\)	\ (-1\)	\(\nearrow\)	\(1\)	\ (\searrow\)	\(0\)

3) Courbes représentatives

Voici un tableau des valeurs remarquables pour les fonctions sinus et cosinus :

\(x\)	\(0\)	\(\frac{\pi} {6}\)	\(\frac{\pi} {4}\)	\(\frac{\pi} {3}\)	\ (\frac{\pi} {2}\)	\(\f
\ (\sin(x) \)	\(0\)	\(\frac{1}{2}\)	\ (\frac{\sqrt{2}} {2}\)			(\frac
\ (\cos(x) \)	\(1\)	\ (\frac{\sqrt{3}} {2}\)	\ (\frac{\sqrt{2}} {2}\)	\(\frac{1}{2}\)	\(0\)	\(-\fra

Courbe représentative cosinus

Courbe représentative sinus

V. LIMITES DES FONCTIONS TRIGONOMÉTRIQUES

PROPRIÉTÉ:

Les fonctions sinus et cosinus n'admettent pas de limites en $(+\inf y)$ ou en $(-\inf y)$.

R	F	M	IΛ	R	0	П	ΙE	
\mathbf{r}	_	•	_	П	v	u		

En revanche, une fonction « contenant » un sinus ou un cosinus peut admettre une limite en \(+\infty\) ou en \(-\infty\).

Exemples:

- $\langle \lim_{x \to \infty} (x^2 + \cos(x)) = + \inf(y) \rangle$
- \(\lim $\{x \to + \inf y\} \cdot \{x\} = 0$ \)

VI. RÉSOLUTION D'ÉQUATIONS ET D'INÉQUATIONS

1) Équations trigonométriques

PROPRIÉTÉ (admise) :

Soient \(a\) et \(x\) deux nombres réels.

- \(\\cos(x) = \\cos(a) \\Leftrightarrow x = a + 2k\\pi\) ou \(x = -a + 2k\\pi\), avec \(k \\ in \\mathbb{Z}\\)
- \(\sin(x) = \sin(a) \Leftrightarrow $x = a + 2k \pi \)$ ou \(x = \pi a + 2k\pi\), avec \(k \in \mathbb{Z}\)

EXEMPLES:

- Résoudre dans $(\mathbb{R})\$ l'équation : $(\cos(x) = -\frac{1}{2}\)$
- Résoudre dans \([-\pi; \pi]\), puis dans \([0; 3\pi]\), l'équation : \ $(\sqrt{2}\sin(x) + 3 = 2)$

SOLUTION:

Premier exemple:

```
((\cos(x) = -\frac{1}{2}))
```

On sait que $(\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$

Donc $(\cos(x) = \cosh(\frac{2\pi}{3}\right))$

 $D'où \(x = \frac{2\pi}{3} + 2k\pi) ou \(x = -\frac{2\pi}{3} + 2k\pi), avec \(k \in \mathbb{Z}\)$

Deuxième exemple:

 $(\sqrt{2}\sin(x) + 3 = 2)$

 $\langle x = -1 \rangle$

 $\(\sin(x) = -\frac{1}{\sqrt{2}} = -\frac{2}{2}\)$

On sait que $(\left(\frac{\pi \left(\frac{\pi}{4}\right)}{4}\right) = -\left(\frac{2}{2}\right)$

Donc $\langle \sin(x) = \sinh(-\frac{\pi}{4}\right)$

D'où \(x = -\frac{\pi}{4} + 2k\pi\) ou \(x = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi = \frac{5\pi}{4} + 2k\pi\), avec \(k \in \mathbb{Z}\)

Dans $(]-\pi; \pi]$) : $(x = -\frac{\pi}{4})$

Dans \([0; 3π]\) : \(x = \frac{5\pi}{4}\) et \(x = \frac{5\pi}{4} + 2\pi = \frac{13\pi}{4}\)

2) Inéquations trigonométriques

EXERCICE:

Résoudre dans \([-\pi; \pi]\) puis dans \([0; 2\pi]\) l'inéquation : \(\\cos(x) \leq \\frac{\sqrt{3}}{2}\)

SOLUTION:

On sait que $(\cos\left(\frac{\pi}{6}\right) = \frac{3}{2}$

En utilisant les variations de la fonction cosinus sur \([-\pi; \pi]\):

- Sur \(\left[-\pi; -\frac{\pi}{6}\right]\) : \(\cos(x) \leq \frac{\sqrt{3}}{2}\)
- Sur \(\left[\frac{\pi}{6}; \pi\right]\): \(\cos(x) \leq \frac{\sqrt{3}}{2}\)

Donc dans $\[-\pi; \pi]\) : \(x \in \left[\frac{\pi}{6}\right] \$

Dans $([0; 2\pi]) : (x \in \{frac{\pi}{6}; frac{11\pi}{6}\right)$

VII. RÉSUMÉ

POINTS CLÉS:

 Les fonctions sinus et cosinus sont définies sur \(\mathbb{R}\\) et périodiques de période \(2\pi\)

- La fonction cosinus est paire, la fonction sinus est impaire
- Leurs dérivées sont : \(\sin' $x = \cos x$ \) et \(\\cos' $x = -\sin x$ \)
- Elles n'admettent pas de limites en \(\pm\infty\)
- Les équations trigonométriques se résolvent en utilisant les propriétés de périodicité

MÉTHODES:

- Pour étudier les variations : utiliser les dérivées
- Pour résoudre $(\cos(x) = \cos(a)) : (x = a + 2k\pi) ou (x = -a + 2k\pi)$
- Pour résoudre $\langle \sin(x) = \sin(a) \rangle$: $\langle x = a + 2k \rangle$ ou $\langle x = \pi + 2k \rangle$
- Pour les inéquations : utiliser les variations et la périodicité

Généré par Matheo - Assistant IA pour les mathématiques

Date de génération : 31/10/2025 à 15:12